ROC curve analysis for biomarkers based on pooled assessments.

نویسندگان

  • David Faraggi
  • Benjamin Reiser
  • Enrique F Schisterman
چکیده

Interleukin-6 is a biomarker of inflammation which has been suggested as having potential discriminatory ability for myocardial infarction. Because of its high assaying cost it is very expensive to evaluate this marker. In order to reduce this cost we propose pooling the specimens. In this paper we examine the efficiency of ROC curve analysis, specifically the estimation of the area under the ROC curve, when dealing with pooled data. We study the effect of pooling when there are only a fixed number of individuals available for testing and pooling is carried out to save on the number of assays. Alternatively we examine how many pooled assays of size g are necessary to provide essentially the same information as N individual assays. We measure loss of information by means of the change in root mean square error of the estimate of the area under the ROC curve and study the extent of this loss via a simulation study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of adjusted-receiver operating characteristic curve analysis in combination of biomarkers for early detection of gestational diabetes mellitus

Introduction: In medical diagnostic field, evaluation of diagnostic accuracy of biomarkers or tests has always been a matter of concern. In some situations, one biomarker alone may not be sufficiently sensitive and specific for prediction of a disease. However, combining multiple biomarkers may lead to better diagnostic.  The aim of this study was to assess the performance of combination of bio...

متن کامل

Pooling biospecimens and limits of detection: effects on ROC curve analysis.

Frequently, epidemiological studies deal with two restrictions in the evaluation of biomarkers: cost and instrument sensitivity. Costs can hamper the evaluation of the effectiveness of new biomarkers. In addition, many assays are affected by a limit of detection (LOD), depending on the instrument sensitivity. Two common strategies used to cut costs include taking a random sample of the availabl...

متن کامل

Increasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method

The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...

متن کامل

ROC analysis for the evaluation of continuous biomarkers: Existing tools and new features in SAS® 9.2

Biomarkers have become essential tools for proper diagnosis and treatment of a wide range of illnesses, including cancer, diabetes, and infectious diseases. The growing need for rigorous evaluation of new biomarkers for medical practice has spurred the development and characterization of statistical methods for diagnostic accuracy. The receiver operating characteristic (ROC) curve is the standa...

متن کامل

Generalization of the Receiver-Operating Characteristic Curve to Determine the Normal Hemoglobin Range Cutoff Points in Pregnant Women

BACKGROUND Identification of a normal range for biomarkers, based on pregnancy outcomes (caused by their high or low values) is of special importance in clinical studies. As some pregnancy outcomes can happen in both high and low levels of biomarkers, the receiver-operating characteristic (ROC) curve is unsuitable for identifying these levels separately; rather, a statistical method is preferab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 22 15  شماره 

صفحات  -

تاریخ انتشار 2003